Simultaneous retrievals of column ozone and aerosol optical properties from direct and diffuse solar irradiance measurements

Christian D. Goering,¹ Tristan S. L’Ecuyer,¹ Graeme L. Stephens,¹ James R. Slusser,² Gwen Scott,² John Davis,² James C. Barnard,³ and Sasha Madronich⁴

Received 9 August 2004; revised 23 November 2004; accepted 17 December 2004; published 11 March 2005.

[1] A retrieval technique has been developed to simultaneously determine column ozone amounts and aerosol optical properties using surface observations of solar ultraviolet direct normal and diffuse horizontal irradiance from a multifilter rotating shadowband radiometer. The retrieval consists of a Bayesian scheme involving a tropospheric ultraviolet radiative transfer model. The technique was tested using cloud-free observations collected during a Mexico City Metropolitan Area air pollution field campaign from April to May 2003. Retrieval results compared favorably to those of independent techniques, including ozone amounts from a direct-Sun method, Langley-derived aerosol optical depths, and aerosol single-scattering albedos from a direct-to-diffuse irradiance ratio technique. Further comparisons were performed between the measurements and model simulations when using the retrieval results as inputs, both from the proposed technique and the combined independent methods. Simulations using the results of the new method were found to agree with the observations within the assumed limits of measurement and model uncertainty. It is anticipated that the technique will be applied across a 33-site network of radiometers maintained by the U.S. Department of Agriculture UV-B Monitoring and Research Program for development of aerosol climatologies and for providing ground validation for satellite measurements.

1. Introduction

[2] Ultraviolet radiation, though less than 7% of the radiant energy emitted by the Sun, greatly impacts the Earth by initiating chemical photolysis and by affecting animals and plants [Cullen et al., 1992; Madronich, 1992, 1993; Gao et al., 2002; Zheng et al., 2002]. Only a few mechanisms exist to regulate the amount of UV reaching the earth’s surface. One of these is ozone, which absorbs most of the UV radiation shorter than 320 nm in the stratosphere [Seinfeld and Pandis, 1998]. However, despite its benefits at high altitude, ozone in the troposphere is considered a pollutant because of the health risks it poses and its ability to damage ecosystems [McKee, 1994; Environment Canada, 1999]. Because the rate of its production depends on the concentrations of precursors such as nitrogen oxides and nonmethane hydrocarbons, ground-level ozone (photochemical smog) is often associated with urban transportation and industry [Environment Canada, 1999; Dickerson et al., 1997].

[3] Atmospheric aerosols also help to regulate UV by absorption and scattering. Although partially introduced into the atmosphere by natural processes, high concentrations of aerosols are often formed in urban areas, where industrial combustion processes and vehicular emissions dominate [Seinfeld and Pandis, 1998; Liou, 2002]. Urban aerosols are in particular recognized for reducing visibility and causing a number of health problems [Dockery and Pope, 1994; Krewski et al., 2003].

[4] In nations such as the United States and Canada, federal regulations exist for controlling harmful emissions and reducing air pollution. However, recent research suggests that emission control strategies may result in unintended effects, such as increasing surface UV if ozone-absorbing precursors are reduced in areas where they are highly concentrated [Castro et al., 2001; Dickerson et al., 1997]. This, in turn, may enhance photolysis of remaining concentrations of those same precursors and lead to an increase in photochemical smog. The implication is that, while emission control measures are needed, care must be taken in drafting air pollution regulations, and as such, continued research into the interaction of ultraviolet radiation, aerosols, and ozone is necessary.
Because of the high level of air pollution known to exist in the Mexico City metropolitan area (MCMA), in 2003, Drs. Mario and Luisa Molina of the Massachusetts Institute of Technology (MIT) organized a field campaign with the intent of providing a scientific basis for new emission control strategies in the MCMA and, more generally, insight into the air quality problem that exists in large urban areas. A timeframe of five weeks in April to early May 2003 was selected to coincide with the period of maximum photochemical activity. A site was designated for immobile, ground-based instruments at the Centro Nacional de Investigación y Capacitación Ambiental (CENICA). Data from this site was supplemented by meteorological and chemical data collected by collaborating Mexican research groups at alternate locations in the city (MCMA-2003 Field Measurement Campaign, available from Massachusetts Institute of Technology Web site at http://eaps.mit.edu/megacities/mcma_fieldcampaign/overview/).

The U.S. Department of Agriculture (USDA) UV-B Monitoring and Research Program (UVMRP) at Colorado State University contributed to the MCMA-2003 field campaign by providing a Yankee Environmental Systems ultraviolet multifilter rotating shadowband radiometer (UV-MFRSR) from its network of ground-based instruments [Bigelow et al., 1998]. Data collected by the instrument was compiled at the UVMRP office during and after the campaign. This paper describes how this data set was subsequently used in developing the optimal estimation technique [Rodgers, 2000] for simultaneous retrievals of aerosol optical depth (τ_{aer}) and single-scattering albedo (ω_{aer}) at the 7 nominal wavelengths of the UV-MFRSR, in addition to daily total column ozone amounts, for facilitation of field campaign goals and for future application across the UVMRP network.

It is important to acknowledge that previous research studies have provided a number of individual methods for determining the above parameters of interest. Shaw et al. [1973] presented the Langley regression technique for retrieval of τ_{aer} from a multiwavelength direct-Sun pointing radiometer, while Herman et al. [1975] introduced the diffuse-to-direct irradiance ratio as a tool to determine the imaginary term in the complex index of refraction. Irradiance ratios have since been used in several studies to determine ω_{aer} in the UV range [Kylling et al., 1998; Krotkov et al., 2003; Petters et al., 2003; Wetzel et al., 2003]. Wenny et al. [1998] used forward simulations of UV

Table 1. Numerical Results From the Model Consistency Check at Davis, California

<table>
<thead>
<tr>
<th>Passband</th>
<th>368 nm</th>
<th>332 nm</th>
<th>325 nm</th>
<th>317 nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median difference (total horizontal), %</td>
<td>1.6</td>
<td>1.9</td>
<td>1.2</td>
<td>0.9</td>
</tr>
<tr>
<td>Median difference (diffuse horizontal), %</td>
<td>1.4</td>
<td>0.9</td>
<td>0.9</td>
<td>1.2</td>
</tr>
<tr>
<td>Median difference (direct horizontal), %</td>
<td>2.3</td>
<td>2.2</td>
<td>3.6</td>
<td>2.1</td>
</tr>
<tr>
<td>Difference at solar noon (total horizontal), %</td>
<td>1.3</td>
<td>0.7</td>
<td>0.9</td>
<td>1.0</td>
</tr>
<tr>
<td>Difference at solar noon (diffuse horizontal), %</td>
<td>1.4</td>
<td>0.4</td>
<td>0.6</td>
<td>1.4</td>
</tr>
<tr>
<td>Difference at solar noon (direct normal), %</td>
<td>1.2</td>
<td>1.2</td>
<td>1.1</td>
<td>0.5</td>
</tr>
</tbody>
</table>
transmission to determine aerosol optical properties, while Slusser et al. [1999] and Gao et al. [2001] presented column ozone retrieval techniques specifically for the UV-MFRSR. Wenny et al. [2001] retrieved column ozone in addition to \(\tau_{\text{aer}} \) from UV-MFRSR measurements. The intent of this research is not to replace these efforts, but rather to build upon the list of available techniques by providing an advanced retrieval containing a built-in analysis of uncertainty and set of diagnostics while taking the findings of others into account.

In the following section, details are presented pertaining to the data and methods used, including the UV-MFRSR in section 2.1, the tropospheric ultraviolet radiative transfer model in section 2.2, the optimal estimation technique in section 2.3, and the cloud-screening process in section 2.4. Section 3 discusses results from the Mexico City field campaign, including comparisons to TOMS ozone measurements and results from the direct-Sun method [Gao et al., 2001], \(\tau_{\text{aer}} \) determined via Langley regression, and \(\omega_{\text{aer}} \) derived from a direct-to-diffuse irradiance ratio technique. Finally, future improvements to the technique are detailed in section 4.

2. Measurements and Methodology

2.1. Instrumentation and Calibration

As described by Bigelow et al. [1998], the UV-MFRSR uses seven independent interference filter photodiode detector combinations and a common diffuser to simultaneously measure total (direct plus diffuse) horizontal irradiance in passbands centered at nominal wavelengths of 300, 305.5, 311.4, 317.6, 325.4, 332.4, and 368 nm. Each has a bandwidth of 2 nm full width at half maximum. A computer-controlled shadowband additionally allows measurement of the diffuse horizontal irradiance, while the direct normal irradiance is derived in near-real time by an onboard processor. Measurements are obtained every 20 s but stored as 3-min averages. Quality assurance of the measurements is achieved through corrections applied as a result of Langley-derived instrument calibration [Slusser et al., 2000], regular evaluation of detector spectral cosine responses, as well as stability and precision studies. As such, UV-MFRSR measurements have been shown to compare quite favorably with those of other ground-based instruments [Estupiñán et al., 2001], in addition to satellite measurements and model simulations [Slusser et al., 2001].

The USDA UV-MRP uses Langley calibration coefficients in the form of wavelength-dependent zero-airmass voltage \(V_{0,\lambda} \) both for converting measured voltage \(V_{\lambda} \) to irradiance as well as for routine computations of \(\tau_{\text{aer}} \) and column ozone. For the UV-MFRSR, each \(V_{0,\lambda} \) is determined using a Langley Analyzer program that implements the regression algorithm of Harrison and Michalsky [1994]. Under ideal conditions, the Langley analysis would produce a \(V_{0,\lambda} \) pair for each passband on each day of operation, and these values would be constant. In reality, however, the value of \(V_{0,\lambda} \) changes with atmospheric conditions, and the number of values that can be obtained varies greatly from one site to another. Turbid sites, in particular, typically allow for little or no determination of \(V_{0,\lambda} \). As such, daily coefficients during the field campaign were estimated from those obtained by the same instrument immediately before and after deployment in the MCMA. Specifically, coefficients were obtained before the campaign at a site in Big Bend, Texas from 1 to 23 February 2003, and afterward at Christman Field in Fort Collins, Colorado from 13 May to 2 June 2003.

Given the determination of daily \(V_{0,\lambda} \) coefficients, the UVMRP is able to compute \(\tau_{\text{aer}} \) for an individual UV-MFRSR measurement by first calculating the total (clear-sky) optical depth, given by

\[
\tau^* = -(\cos Z) \ln \left(\frac{V_{\lambda}}{V_{0,\lambda}} \right),
\]

where \(Z \) represents the solar zenith angle at the time of measurement, and then subtracting contributions to \(\tau^* \) due to absorption by atmospheric gases (in this case, ozone) and Rayleigh scattering, as parameterized by Stephens [1994].

2.2. Radiative Transfer Model

In order to facilitate the retrievals specified in section 1, a tropospheric ultraviolet radiative transfer model (TUV4.2) was chosen as a forward model based on its flexibility and the successful application of a prior version in recent aerosol studies [Castro et al., 2001; Petters et al., 2003; Wietzel et al., 2003]. Among the highlights of this latest version are built-in radiative transfer options that include nine variations on the two-stream approximation [Toon et al., 1989] and a multistream discrete ordinates method [Stamnes et al., 1988]. Additionally, built-in or user-defined physical, biological, and chemical weighting functions, such as instrument response functions and action spectra, may be applied to simulated irradiances and actinic fluxes. Weighting functions for the photolysis of chemical

Table 2. Number of Cloud-Screened Measurements and Corresponding Range of Indices for Individual Days During the Field Campaign

<table>
<thead>
<tr>
<th>Date, 2003</th>
<th>Number of Measurements</th>
<th>Index Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 April</td>
<td>49</td>
<td>0 – 48</td>
</tr>
<tr>
<td>6 April</td>
<td>16</td>
<td>49 – 64</td>
</tr>
<tr>
<td>8 April</td>
<td>4</td>
<td>65 – 68</td>
</tr>
<tr>
<td>12 April</td>
<td>21</td>
<td>69 – 89</td>
</tr>
<tr>
<td>14 April</td>
<td>38</td>
<td>90 – 127</td>
</tr>
<tr>
<td>15 April</td>
<td>51</td>
<td>128 – 178</td>
</tr>
<tr>
<td>16 April</td>
<td>65</td>
<td>179 – 243</td>
</tr>
<tr>
<td>17 April</td>
<td>33</td>
<td>244 – 276</td>
</tr>
<tr>
<td>18 April</td>
<td>42</td>
<td>277 – 318</td>
</tr>
<tr>
<td>21 April</td>
<td>15</td>
<td>319 – 333</td>
</tr>
<tr>
<td>24 April</td>
<td>16</td>
<td>334 – 349</td>
</tr>
<tr>
<td>26 April</td>
<td>41</td>
<td>350 – 390</td>
</tr>
<tr>
<td>27 April</td>
<td>23</td>
<td>391 – 413</td>
</tr>
<tr>
<td>30 April</td>
<td>24</td>
<td>414 – 437</td>
</tr>
<tr>
<td>2 May</td>
<td>17</td>
<td>438 – 454</td>
</tr>
</tbody>
</table>

Table 3. Summary of a Priori Information Used for Optimal Estimation Retrievals

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Expected Range</th>
<th>Initial Guess in (x_0)</th>
<th>Variance in (x_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(O_3)</td>
<td>240 – 310 DU</td>
<td>275 DU</td>
<td>(35 DU)^2</td>
</tr>
<tr>
<td>(\tau_{\text{aer}})</td>
<td>0.0 – 1.6 DU</td>
<td>0.8</td>
<td>(0.8/3)^2</td>
</tr>
<tr>
<td>(\omega_{\text{aer}})</td>
<td>0.7 – 1.0</td>
<td>0.85</td>
<td>(0.15/3)^2</td>
</tr>
</tbody>
</table>

*DU is Dobson units.
species are unique in that they consist of the absorption cross section multiplied by the quantum yield at each defined spectral interval and altitude in the model atmosphere. The model can also be customized through a user interface that allows specification of such items as geographic location and elevation, date and range of time or solar zenith angle, spectral region of interest, radiative transfer method, atmosphere characteristics such as column gas amounts and aerosol or cloud properties, as well as output product type and format. Moreover, subroutines allow for customization of source data for the spectral profile of extraterrestrial irradiance, vertical profile of atmospheric aerosol, and absorption cross sections of atmospheric gases.

[13] A consistency check was performed to ensure that this model would be capable of simulating UV-MFRSR measurements to a desired accuracy in an environment with minimal complexities. To this end, a relatively pollution-free site at Davis, California was chosen from the UVMRP network, where such an instrument is permanently located. Measurements from a predominantly clear day on 12 May 2003 were then compared to simulations from the TUV model. For the sake of simplicity, the exercise was limited to finding a selection of inputs such that, over the course of the day, forward simulations of the irradiance components agreed with UV-MFRSR measurements in the four passbands having the longest nominal wavelengths, where the amount of ozone has little or no effect on the results. Results were considered in agreement if the differences between the actual and simulated measurements did not exceed 2% at solar noon and median differences over the time series did not exceed 5%.

[14] Separate model runs were planned to check the bands individually, each iterating on ω_{aer} while holding all other inputs constant. Among the fixed inputs were τ_{aer} determined at solar noon using the Langley regression method described in section 2.1, a column ozone amount of 353 DU and a surface albedo of 6% based on TOMS measurements, and an asymmetry parameter of 0.55 based on the assumption of an environment free of large, forward scattering aerosols as would be found in heavily polluted regions. In addition, spectral response functions of the instrument at Davis were implemented as physical weighting functions in the model. The eight-stream DISORT radiative transfer algorithm was used to determine the spectral irradiance components, each of which was weighted by the response function in the corresponding passband, integrated over the spectrum, and normalized by the sum of the interval-weighted positive spectral responses. Agreement was reached in all four passbands when the following values of ω_{aer} were used as inputs: 0.957 at 317 nm, 0.924 at 325 nm, 0.881 at 332 nm, and 0.988 at 368 nm. Figure 1 illustrates the precision with which each simulated component conformed to the observations, and numerical results are summarized in Table 1.

2.3. Optimal Estimation Framework

[15] The optimal estimation technique provides an adaptable, diagnostic, multiparameter retrieval framework well suited to problems requiring the simultaneous inversion of a large number of distinct observations in order to obtain a set of retrieval parameters consistent with all of them. Theoretical and mathematical details of the technique are provided by a number of recent studies applying the technique to retrievals of water vapor [Engelen and Stephens, 1999],

Table 4. Minimum and Maximum Retrieval Parameters and Uncertainties Corresponding to One Standard Deviation Obtained During the Field Campaign

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Retrieval Parameters</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Minimum</td>
<td>Maximum</td>
</tr>
<tr>
<td>Column O$_3$</td>
<td>261.1 DU</td>
<td>298.1 DU</td>
</tr>
<tr>
<td>τ_{aer} 300 nm</td>
<td>0.33</td>
<td>1.23</td>
</tr>
<tr>
<td>τ_{aer} 305 nm</td>
<td>0.30</td>
<td>1.06</td>
</tr>
<tr>
<td>τ_{aer} 311 nm</td>
<td>0.32</td>
<td>1.02</td>
</tr>
<tr>
<td>τ_{aer} 317 nm</td>
<td>0.32</td>
<td>0.97</td>
</tr>
<tr>
<td>τ_{aer} 325 nm</td>
<td>0.29</td>
<td>0.95</td>
</tr>
<tr>
<td>τ_{aer} 332 nm</td>
<td>0.30</td>
<td>0.92</td>
</tr>
<tr>
<td>τ_{aer} 368 nm</td>
<td>0.26</td>
<td>0.79</td>
</tr>
<tr>
<td>ω_{aer} 300 nm</td>
<td>0.76</td>
<td>0.86</td>
</tr>
<tr>
<td>ω_{aer} 305 nm</td>
<td>0.83</td>
<td>0.94</td>
</tr>
<tr>
<td>ω_{aer} 311 nm</td>
<td>0.77</td>
<td>0.91</td>
</tr>
<tr>
<td>ω_{aer} 317 nm</td>
<td>0.75</td>
<td>0.89</td>
</tr>
<tr>
<td>ω_{aer} 325 nm</td>
<td>0.75</td>
<td>0.92</td>
</tr>
<tr>
<td>ω_{aer} 332 nm</td>
<td>0.73</td>
<td>0.91</td>
</tr>
<tr>
<td>ω_{aer} 368 nm</td>
<td>0.71</td>
<td>0.92</td>
</tr>
</tbody>
</table>
rainfall [L’Ecuyer and Stephens, 2002], and cloud micro-
physical properties [Miller et al., 2000; Austin and
Stephens, 2001; Cooper et al., 2003], but are repeated here
in the context of retrieving column ozone amounts and
aerosol optical properties to simplify interpretation of the
results. The set of independent observations corresponding
to a single measurement and consisting of direct normal and
diffuse horizontal irradiance components are assembled into
a measurement vector \(\mathbf{y} \), while a state vector \(\mathbf{x} \) is defined for the
retrieval parameters, consisting of the column ozone
amount in addition to \(\tau_{aer} \) and \(\omega_{aer} \) at the center wavelength
of each passband. The relationship between \(\mathbf{x} \) and \(\mathbf{y} \) is
expressed as

\[
y = F(\mathbf{x}, \mathbf{b}) + \varepsilon, \tag{2}
\]

in which \(F \) denotes a forward model (in this case, TUV4.2),
\(\mathbf{b} \) represents a vector of constant model inputs, and \(\varepsilon \)
represents the error involved in mapping model simulations
to the observations.

The inversion of (2) is greatly simplified by the
assumption that forward model behavior is linear for
small perturbations in the state vector. Under this
assumption, model behavior is specified in a Jacobian
or weighting function matrix \(\mathbf{K} \), the elements of which are defined by

\[
K_{ij} = \frac{\partial F_i(\mathbf{x})}{\partial x_j} \tag{3}
\]

and implemented by using TUV4.2 to compute the change
in simulated irradiance components corresponding to a 2% increase in the individual retrieval parameters. (This
percentage was chosen based on a model sensitivity study
that found only negligible differences in (3) for perturba-
tions of up to 5%.) Applying Bayes’ theorem and assuming
Gaussian statistics, Rodgers [2000] demonstrates that the
most probable retrieval solution is that which minimizes the
scalar cost function

\[
\Phi = (\mathbf{y} - F(\mathbf{x}))^T \mathbf{S}_a^{-1} (\mathbf{y} - F(\mathbf{x})) + (\hat{\mathbf{x}} - \mathbf{x}_a)^T \mathbf{S}_a^{-1} (\hat{\mathbf{x}} - \mathbf{x}_a). \tag{4}
\]

Specifically, the solution is found by Newtonian iteration via

\[
\hat{\mathbf{x}} = \hat{\mathbf{x}}_{n-1} + \hat{\mathbf{S}} \left(\mathbf{K}^T \mathbf{S}_a^{-1} (\mathbf{y} - F(\hat{\mathbf{x}}_{n-1})) + \mathbf{S}_a^{-1} (\mathbf{x}_a - \hat{\mathbf{x}}_{n-1}) \right), \tag{5}
\]

determines the associated retrieval covariance matrix. Here, \(\mathbf{x}_a \)
represents the best guess of the retrieval parameters prior
to the measurement and is termed the a priori state vector.
Diagonal elements in covariance matrices \(\mathbf{S}_a \) and \(\mathbf{S}_y \) specify
the uncertainty in the a priori state and combined
uncertainty in the measurements and model, respectively,
while off-diagonal elements indicate uncertainty correla-
tions between vector elements. The retrieval proceeds until
the covariance-weighted square difference between esti-
mates is much less than the number of retrieval parameters
(\(n \)), as indicated by

\[
(\hat{\mathbf{x}} - \hat{\mathbf{x}}_{n-1})^T \mathbf{S}^{-1} (\hat{\mathbf{x}} - \hat{\mathbf{x}}_{n-1}) \ll n. \tag{7}
\]

Once the solution is determined, the diagonal
elements of \(\mathbf{S} \) provide a direct estimate of the uncertainty in
each element of the retrieval vector, defined as

\[
e_i = \sqrt{S_{ii}} \times 100\% \tag{8}
\]

for one standard deviation. Diagonal and off-diagonal
elements readily illustrate how the retrieval uncertainty is
related to the correlation between model and observation.

\[
C_{ij} = \frac{\hat{S}_{ij}}{\sqrt{\hat{S}_{ii} \hat{S}_{jj}}}, \tag{9}
\]

Additional diagnostics provided by the optimal estimation
technique further indicate whether the retrieval has worked
properly. Most applicable to this research is the averaging kernel matrix defined by

$$A = \hat{SK}^T S_h^{-1} K,$$

which characterizes how the retrieval is resolved. As the accuracy of the retrieval increases, the area encompassed by each row of \(A\) approaches a value of 1 such that \(A\) increasingly resembles the identity matrix. Similarity to the identity matrix indicates that the retrieval solution has been determined using the observations rather than the a priori information, and as such, the retrieval has provided new information about the actual state. Lastly, three indicators of the usefulness of the measurements for performing the retrieval can be derived from the singular values \((\lambda_i)\) of the error-weighted weighting function matrix

$$\hat{K} = S_y^{-1/2} KS_h^{-1/2},$$

defined by Rodgers [2000]. The first of these indicators is the number of degrees of freedom for signal

$$d_s = \sum \frac{\lambda_i^2}{1 + \lambda_i^2},$$

which indicates the number of useful independent observations in the retrieval. Second, a count of the number of singular values greater than 1 \((r_y)\) indicates the number of useful independent quantities retrieved from \(y\). If less than the dimension of \(x\), the ratio between the two identifies the fraction of \(x\) determined solely by the measurement. Finally, the Shannon information content

$$H = \frac{1}{2} \sum \ln(1 + \lambda_i^2)$$

identifies the number of distinct states that can be determined as a result of \(y\) relative to the a priori information alone. If new elements are added to \(y\), the change in \(H\) indicates how many more distinct states can be retrieved, thus quantifying the extent to which those observations improve knowledge of the state. Alternatively, changes in \(H\) can be used to evaluate the performance of a particular retrieval implementation over time for a single instrument (i.e., from one measurement to another, from day to day, and over longer time periods), or to compare the performance of multiple instruments in different locations, such as across a network.

2.4. Cloud-Screening Methodology

Prior to application of the retrieval, cloud-contaminated field campaign measurements were removed from the data set so as to not misinterpret the effect of cloud cover as due to aerosols. This was accomplished by a program implementing the technique of Long et al. [1999] and detailed by Long and Gaustad [2004], which estimates fractional cloud coverage from ground-based broadband irradiance measurements. Since broadband data is not provided by the UV-MFRSR, results of the cloud-screening method based on open channel (i.e., unfiltered) measurements of a visible-wavelength MFRSR colocated at CENICA were obtained from the Pacific Northwest National Laboratory (PNNL). To account for discrepancies in the measurement intervals of the two instruments, cloud amounts were averaged over 3-min intervals to coincide with the UV-MFRSR data. However, the removal of all measurements for which the algorithm estimated a cloud fraction above 1% resulted in an overly sensitive screen that eliminated all but 38 measurements for the duration of the campaign. Since previous research has suggested that MFRSR retrievals of \(\omega_{air}\) may not require entirely cloud-
free conditions provided the direct solar beam is unblocked [Krotkov et al., 2003], averaged cloud fractions of up to 2% were allowed to obtain a total of 455 measurements with which to perform the retrieval technique. Table 2 lists the number of cloud-screened measurements available on each day of the campaign along with the corresponding range of indices (numbered from 0 to 454) within the data set.

3. Results and Discussion

3.1. Retrieval Results

[19] Retrievals for each of the cloud-screened measurements were performed using the a priori state vector and variances summarized in Table 3. The range in ozone amounts was chosen based on TOMS measurements over Mexico City during April 2003 and field campaign values determined using the direct-Sun method [Gao et al., 2001]. Similarly, the range in \(\tau_{\text{aer}} \) was chosen based on Langley-derived results using the field campaign data, while \(\omega_{\text{aer}} \) limits were selected based on prior research. Error variances assigned to \(S_a \) were assumed to follow a Gaussian distribution and calculated so as to achieve a 99.7% confidence interval corresponding to three standard deviations. Preliminary testing of the technique showed that the use of a lesser confidence interval allowed for unphysical retrieval results (e.g., \(\omega_{\text{aer}} > 1 \)) while the use of a greater confidence interval was overly restrictive and resulted a retrieval solution essentially matching the initial guess. For consistency, the same Gaussian assumption and confidence interval were used in specifying a combined 10% measurement and model error in \(S_a \). While this percentage likely overestimates the error in the measurement alone, it was chosen as a crude estimate to include the uncertainties associated with modeling direct and diffuse irradiances, such as from aerosol composition and approximations in the radiative transfer method. A more rigorous determination of model and measurement error, as would be needed operationally, is the subject of ongoing research and beyond the scope of this work.

[20] At each retrieval, the off-diagonal elements in both \(S_a \) and \(S_y \) were set to zero, equivalent to assuming that all measurements and state vector parameters are uncorrelated. In reality, it is likely that correlations do exist among the \(\tau_{\text{aer}} \) and \(\omega_{\text{aer}} \) at the wavelengths of the UV-MFRSR and that forward model errors influencing more than one wavelength cause uncertainties in \(S_y \) to also be correlated. To illustrate

Figure 5. Time series of (top) \(\tau_{\text{aer}} \) and (bottom) \(\omega_{\text{aer}} \) retrieved in each passband for 15 April 2003 when correlations among the aerosol parameters are included in the a priori covariance matrix.

Figure 6. Time series of error percentages corresponding to one standard deviation in (top) \(\tau_{\text{aer}} \) and (bottom) \(\omega_{\text{aer}} \) for 15 April 2003 when correlations among the aerosol parameters are included in the a priori covariance matrix.
the effect of this assumption on the retrieval outcome, rough correlations in S_a were used in a second set of retrievals for a subset of the field campaign data. It is important to note, however, that the use of improperly estimated correlations introduces the risk of adding spurious information into the retrieval that may, in fact, degrade the results. As such, a more precise determination of these correlations is needed for operational use.

Table 4 summarizes the range of each parameter retrieved over the course of the campaign and the range in uncertainties corresponding to one standard deviation. Daily column ozone amounts were determined by averaging the ozone retrievals corresponding to individual measurements on each day. The range of w_{aer} retrieved at each wavelength is similar to those obtained by Petters et al. [2003], who attributed absorption to the presence of black carbon aerosols. However, the latter found a distinct upward trend in the range of w_{aer} with wavelength. To the contrary, Figures 2 and 3 illustrate a time series of w_{aer} and their associated errors from 15 April in which a downward trend in w_{aer} (i.e., increasing absorption) with wavelength occurs. It is possible that this trend is the effect of an absorbing gas not accounted for in the model inputs, such as NO2, which is associated with high levels of vehicle emissions as found in the MCMA and whose absorption cross sections increase with wavelength from 300 to 368 nm at 298 Kelvin [Seinfeld and Pandis, 1998]. To test this hypothesis, the sensitivity of the 15 April aerosol retrievals to NO2 vertical column density

Figure 7. Depiction of the averaging kernel matrix for the 27 April 2003 retrieval at local noon. Peaks along the diagonal indicate resolution of the corresponding parameters based upon the measurements. Off-diagonal peak corresponding to w_{aer} at 300 nm indicates poor resolution due to reliance upon a priori information.

Figure 8. Time series of H in bits (converted from natural to base-two logarithm) corresponding to the optimal estimation retrievals on 15 April 2003.

Figure 9. Comparison of daily column ozone amounts from optimal estimation results with Total Ozone Mapping Spectrometer measurements and the direct-Sun method.
was studied. NO₂ densities were estimated for Mexico City based on differential optical absorption spectrometer (DOAS) surface measurements and lidar returns from the field campaign. Increasing the amount of NO₂ from 0 to 40 ppb within a morning mixing layer height of 840 m was found to raise ω_aer at 368 nm by 0.05 and lower τ_aer at the same wavelength by 0.04. Retrievals at shorter wavelengths were less affected. Thus the influence of NO₂ does not appear to be large enough to reverse the observed trend in ω_aer. Furthermore, these differences are generally of the same order of magnitude or less than the uncertainties in the retrieved τ_aer and ω_aer shown in Figure 3. (Recall that the curves in Figure 3 represent one standard deviation in each variable; hence even the large NO₂ effect at 368 nm falls within a 99.7% confidence interval determined from S). This supports the assertion that the 10% measurement and model error estimate was sufficiently large to account for the effects of NO₂, even though those effects were not explicitly modeled in \(S_y \). At the same time, these results suggest that the effect of NO₂ should either be modeled or retrieved in order for the algorithm to be used operationally, particularly in polluted regions where NO₂ is highly concentrated.

[22] As previously mentioned, the typical range in chemical composition of aerosol particles is likely to impose correlations in both \(\tau_aer \) and \(\omega_aer \) at the wavelengths of the UV-MFRSR. A benefit of the optimal estimation technique is the ability to model such correlations. By using (9) to construct a correlation matrix from the elements of \(S \), correlations in the retrieval result are placed within a range from 1.0 (perfectly correlated) to −1.0 (perfectly anticorrelated). Figure 4 depicts an averaged correlation matrix for the 51 retrievals on 15 April in which the diagonal elements have been set to zero for greater emphasis of the off-diagonal elements. Positive correlations (shades of red) are evident for both \(\tau_aer \) and \(\omega_aer \) among neighboring wavelengths, particularly at 300 and 305 nm. Negative correlations (shades of blue) appear between \(\tau_aer \) and \(\omega_aer \) together at the same wavelength, and to a lesser magnitude at neighboring wavelengths. Additional correlations are evident between the total column ozone and aerosol parameters at the shortest wavelengths. It is interesting to note that, in general, the largest retrieval errors also occur at the shortest wavelengths. This reflects the fact that the 300 and 305 nm channels exhibit the least sensitivity to the aerosol properties being retrieved, which forces the algorithm to look toward neighboring channels to provide the information it needs to constrain the solution.

[23] Because it is an adaptation of \(S \), the correlation matrix indicates to what extent the information provided by the model and measurements about the retrieval parameters is correlated, not whether the physical parameters themselves are correlated. To illustrate the effect of physical correlations, the 15 April retrievals were repeated with nonzero off-diagonal elements included in \(S \). For simplicity, aerosol parameters were assigned a perfect correlation with the other parameters of the same type, less 10% for every 6 nm change in wavelength. Cross correlations between \(\tau_aer \) and \(\omega_aer \) were excluded, as were correlations with column ozone. Figures 5 and 6 illustrate the resulting time series of \(\tau_aer \), \(\omega_aer \), and their associated errors, for comparison with Figures 2 and 3. Most notable in these figures are the \(\omega_aer \) series at 300 and 305 nm, which conform more closely to the trend at middle and upper wavelengths, and the spectral trend in \(\omega_aer \) which is more distinct. In addition, retrieval errors in both \(\tau_aer \) and \(\omega_aer \) at 300 nm are reduced by nearly one third, going from 5–6% in the absence of correlations to 3–4% with them. This is a direct result of the fact that the imposed correlations between parameters allows the algorithm to use the observations at longer wavelengths, which exhibit greater sensi-

Table 5. Minimum and Maximum Root-Mean-Square (RMS) Differences in \(\tau_aer \) Retrieved Using Optimal Estimation Versus the Langley Regression Method

<table>
<thead>
<tr>
<th>Passband</th>
<th>300 nm</th>
<th>305 nm</th>
<th>311 nm</th>
<th>317 nm</th>
<th>325 nm</th>
<th>332 nm</th>
<th>368 nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum daily RMS difference</td>
<td>0.019</td>
<td>0.005</td>
<td>0.002</td>
<td>0.003</td>
<td>0.004</td>
<td>0.004</td>
<td>0.003</td>
</tr>
<tr>
<td>Maximum daily RMS difference</td>
<td>0.116</td>
<td>0.040</td>
<td>0.026</td>
<td>0.016</td>
<td>0.015</td>
<td>0.020</td>
<td>0.027</td>
</tr>
</tbody>
</table>
activity, to augment the lesser sensitivity at 300 nm. Laboratory experiments to better estimate the strengths of these correlations will have the potential to further improve the retrieval accuracy.

To more completely examine the behavior and performance of the retrieval, the information diagnostics introduced in section 2.3 were applied. The field campaign mean value of d_{aer} was determined to be 12.38, indicating that 88% of the observations assembled into y were independent of one another on average. The mean value of r_{aer} was determined to be 14, which, although equivalent to the total number of singular values l, is less than the dimension of x. This result indicates that the retrieval was generally underdetermined by 7% and is consistent with the averaging kernel matrix depicted in Figure 7. Peaks occurring along the diagonal of A with numerical values near 1 indicate that, for most retrieval parameters, the solution was resolved based upon the measurements. However, the off-diagonal peak corresponding to w_{aer} at 300 nm indicates poor resolution due to reliance upon the a priori information and the determination of τ_{aer} at the same wavelength. Last, Figure 8 illustrates a time series of H corresponding to the retrievals on 15 April, in which H declines from a value of 39.6 bits prior to 0800 to a value of 31.4 bits shortly after 1030. This is equivalent to stating that, at 0800, the measurements provided a resolution of $\gamma_{39.6}$ or 833 trillion distinct retrievable states relative to the a priori information alone, versus 2.8 trillion distinct retrievable states at the later time. Thus the measurements provided considerably more information to the retrieval earlier in the day, while the diffuse component of the irradiance was dominant over the direct beam. Given that w_{aer} at 300 nm was the least well resolved parameter and that the diffuse irradiance alone contributes to the determination of w_{aer}, it is consistent that the measurement vector y containing both diffuse and direct irradiances provided the most information to the retrieval while the diffuse component was strongest relative to the direct component.

3.2. Comparison to Independent Methods

Once the retrieval results were determined, they were compared to the results of independent, more widely used methods. Specifically, daily column ozone amounts were compared to TOMS measurements and results of the direct-Sun method [Gao et al., 2001]. This comparison is illustrated in Figure 9. In general, the optimal estimation results compared to within 5% of the independent methods and followed the day-to-day trend. Exceptions on isolated days, such as on 8 April, are likely due to the small number of cloud-free observations available for performing the daily average, since the direct-Sun method is not constrained to a cloud-screened set of observations. The higher values and difference in trend from 15–17 April may reflect an effort by the optimal estimation technique to compensate for NO2 absorption of UV via an increase in the amount of ozone, although an ozone retrieval sensitivity study for 15 April found only a modest decrease of 1.7 DU in response to an increase in NO2 from 0 to 40 ppb.

Next, retrievals of τ_{aer} were compared to results of the Langley regression method described in section 2.1. Figure 10 (top) illustrates the τ_{aer} series comparison at 300 nm, where agreement between methods was worst among the seven wavelengths, while Figure 10 (bottom) presents the comparison at 325 nm, where agreement was best. In both cases, the comparison was quite favorable, as indicated by the similar trends and root-mean-square (RMS) differences shown. Table 5 summarizes the maximum and minimum daily RMS differences between the results of the two methods at each wavelength as further evidence of the precision with which the results agreed.

<table>
<thead>
<tr>
<th>Passband</th>
<th>300 nm</th>
<th>305 nm</th>
<th>311 nm</th>
<th>317 nm</th>
<th>325 nm</th>
<th>332 nm</th>
<th>368 nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum daily RMS difference</td>
<td>0.013</td>
<td>0.012</td>
<td>0.008</td>
<td>0.006</td>
<td>0.008</td>
<td>0.004</td>
<td>0.013</td>
</tr>
<tr>
<td>Maximum daily RMS difference</td>
<td>0.102</td>
<td>0.071</td>
<td>0.060</td>
<td>0.056</td>
<td>0.053</td>
<td>0.045</td>
<td>0.054</td>
</tr>
</tbody>
</table>
Finally, retrievals of ω_{aer} were compared against those from a direct-to-diffuse irradiance ratio technique. In this case, TUV4.2 was modified to produce lookup tables consisting of τ_{aer}, ω_{aer}, solar zenith angle, and irradiance ratio, from which values of ω_{aer} at each wavelength were interpolated based on the Langley-derived τ_{aer}, solar zenith angle at the time of measurement, and observed direct-to-diffuse ratio. Figure 11 (top) illustrates the ω_{aer} series comparison at 300 nm, where agreement between methods was again worst among the seven wavelengths, while Figure 11 (bottom) presents the comparison at 332 nm, where agreement was best. Due to poor resolution of ω_{aer} at the shortest wavelengths as previously noted, the comparison was less favorable in the worst case than for the 300 nm optical depths. However, in the best case, the comparison was once again quite favorable, as evidenced by the trend similarity and RMS difference shown in Figure 11 (bottom). Further evidence of the favorable comparison at longer wavelengths is presented in Table 6, which summarizes the maximum and minimum daily RMS differences between the two methods.

3.3. Comparison to Measurements

The optimal estimation technique is designed to tune the retrieval results to the observations and, in some cases, to the a priori information, depending on the uncertainties specified in S_y and S_x. Therefore, to verify that the retrieval was performing as intended, field campaign measurements were compared to the irradiances simulated by TUV4.2 when using the retrieval results as inputs. As a point of reference, separate comparisons were used to examine the optimal estimation results and those from the combined independent methods. Figure 12 illustrates the daily mean percentage differences of the direct normal irradiance simulations relative to the observations in both cases, while Figure 13 illustrates the daily mean percentage differences relative to the diffuse horizontal measurements. The direct beam simulations compare favorably to the observations in every passband when using inputs from the optimal estimation technique, thus illustrating that the optimal estimation framework is capable of consistently and simultaneously matching with multiple measurements. Differences in simulated diffuse irradiance with respect to the observations were comparable between the retrieval methods in most cases, which is expected since ω_{aer} retrievals employed TUV4.2 in either case. In both the direct and diffuse cases, the actual differences between the irradiances that were measured and simulated from the optimal estimation results were considerably less than the assumed uncertainty percentage used to define S_y.

Finally, it is worth noting that differences in the retrieval results are not constant in time, as Figures 10 and 11 indicate. Since these retrieval methods each respond differently to the surrounding environment, both the differences between methods and the differences relative to the measurements change as the environment itself changes. This is precisely why, when using the optimal estimation
technique, it is important to determine the retrieval covariance matrix \(\mathbf{S} \) at each retrieval.

4. Conclusions

As a retrieval technique, optimal estimation offers a number of advantages by not only allowing for the simultaneous determination of multiple parameters but also providing a built-in estimate of the retrieval uncertainty and relatively simple mathematical extensions for the analysis of the usefulness of the measurements. Moreover, adaptation of the retrieval to new information sources or a change in retrieval parameters only requires modification to the definitions of the measurement and state vectors and the weighting function matrix \(\mathbf{K} \), provided that the forward model remains computationally efficient. At the same time, certain improvements to the proposed implementation are needed in order for the technique to be applied operationally and are currently being researched. First, laboratory experiments are needed to better estimate the correlations between parameters in the initial guess \(\mathbf{x}_0 \). Doing so will reduce the amount of independence in the retrieval parameters, thereby allowing more of the retrieval solution to be determined by the measurements and preventing an underdetermined retrieval. Second, the use of irradiance ratios in the measurement vector \(\mathbf{y} \), such as the diffuse fraction or direct-to-diffuse ratio, will remove the dependence upon instrument calibration and allow for the amount of measurement uncertainty to be reduced. Third, uncertainty in the forward model needs to be determined more precisely, as opposed to the broad percentage applied in this research. With these improvements, it is anticipated that the optimal estimation technique will facilitate the continuous retrieval of ozone amounts and aerosol optical properties across the USDA UVMRP network, in order to supply ground truth for satellite measurements and promote development of a climatology for future research.

Acknowledgments. We thank Mario and Luisa Molina at MIT for organizing the field campaign from which the data for this research was obtained. We also thank Chris Kumferow and Richard Eykholt at Colorado State University for their insights and comments on this project. This research was supported by the Office of Biological and Environmental Research of the U.S. Department of Energy (DE-FG02-94ER61748) as part of the Atmospheric Radiation Measurement Program and by USDA/USDA Ultraviolet Radiation Monitoring Program, Lamont, Okla.

References

Herman, B. M., R. S. Browning, and J. J. DeLuisi (1975), Determination of the effective imaginary part of the complex refractive index of a dusty sphere by remote sensing: The diffuse-direct radiation method, J. Atmos. Sci., 32, 918–925.

J. C. Barnard, Pacific Northwest National Laboratory, POB 999 (MSN K9-30), Richland, WA 99352, USA.

J. Davis, G. Scott, and J. R. Slusser, U.S. Department of Agriculture UV-B Monitoring and Research Program, Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO 80523, USA.

C. D. Goering, T. S. L’Ecuyer, and G. L. Stephens, Department of Atmospheric Science, Colorado State University, 1371 Campus Delivery, Fort Collins, CO 80523, USA. (cgoering@atmos.colostate.edu)

S. Madronich, Atmospheric Chemistry Division, National Center For Atmospheric Research, P.O. Box 3000, Boulder, CO 80307, USA.